
Discrete Random Walks 07-03-16
N. T. Gladd

Initialization: Be sure the files NTGStylesheet2.nb and NTGUtilityFunctions.m is are in the same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

In[101]:= SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Purpose
Motivated by reading the very interesting Safe Leads and Lead Changes in Competitive Sports,

Clauset, Kogan and Redner, I have spent time on issues related to the arcsine distributions encoun-

tered in random walk phenomena. The paper points out that these distributions are relevant to NBA

basket ball campaigns. It seemed to me, these distributions are also relevant to the PL history of option

trading campaigns. I have previously written of applications probability theory to trading campaigns and

wanted to add to this corpus. There are arcsine distributions for the amount of time a trade campaign is

profitable (or losing), the time in the campaign at which the last return to zero PL would occur, and the

time at which the maximum PL would occur. I struggled with some of the texts and articles relevant to

this topic, so there was a motivation to review and improve my capabilities in discrete mathematics.

I looked at various internet articles and lectures as well as the texts --

Probability and Random Processes, Grimmett and Stirzaker

Introduction to Probability, Grinstead and Snell (downloaded copy)

Probability Theory and Stochastic Processes with Applications, Knill (downloaded copy)

Probability Notes, Weber (downloaded copy)

An Introduction to Probability Theory and its Applications, Vols. I and II, Feller (downloaded copy)

As is often the case for me, mathematical notation and formal presentation of topics was a challenge.

My background in physics predisposes me toward derivations and problem solving as opposed to the

lemmas, theorems and formal proofs. After a few forays, I settled on the classical text by Feller. This is

a good book and also provided me some comfort by discussing the history of some results. Some

random walk proofs are nonintuitive and were actually developed much later than I would have

Discrete Random Walks 07-03-16.nb 1

copyright © N T Gladd 2016

expected. I don’t feel as bad that my standard physicsy procedure of starting from first principles and

moving relatively straightforwardly toward some result ran into obstacles. This notebook consists of

working through the details of some of Feller’s results on discrete random walks. To facilitate my under-

standing, I constructed several visualizations of random walk phenomena.

I Basics
I follow the development of some selected topics in Feller Volume 1, Chapter III. Consistent with the

trading campaign motivation discussed above I try to cast the discussion toward the cumulative profit

loss path of a series of trades, using wealth W as the dependent variable. In the following the analogy

of the trade campaign with a random walk is that each winning trade occurs with probability 1/2 and

results in a gain of 1 wealth unit. Some results immediately generalize to arbitrary probability of success.

I specifically work toward the arcsine law for lead changes in a random walk. Feller establishes several

intermediate results that figure in the proof of the arcsine law, as well as being of interest in their own

right.

1.1 Ballot theorem (number of ways a streak of winning trades can occur)

This is a fundamental result for random walks that is useful in many contexts.

I follow Feller’s arguments but use my own notation. The reflection principle is important.

2 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[103]:= Module[{offset = {0, 0.3}, a = 0, b = 1, n = 5, path, reflectedPath, text, lab},

path = {{a, 0}, {1, 1}, {2, 0}, {3, 1}, {4, 2}, {5, b}};

reflectedPath = {{a, 0}, {1, -1}, {2, 0}, {3, 1}, {4, 2}, {5, b}};

lab =

Stl["Reflection principle\nA path that start positive\n but touches zero wealth

(black line) has\n one-to-one correspondence

to reflected path (red dashed line)."];

text["a"] = Text["{0, a = 0}", offset];

text["b"] = Text["{5, b = 1}", {5, 1} + offset];

ListPlot[{path, reflectedPath }, Joined → True,

Epilog → {text["a"], text["b"]},

PlotStyle → {Black, Directive[Thick, Red, Dashed]},

AxesLabel → {Stl["n"], Stl["W"]}, PlotLabel → lab,

PlotRange → {{-0.5, 6}, Automatic}]]

Out[103]=

1 2 3 4 5 6
n

-1.0

-0.5

0.5

1.0

1.5

2.0

W

Reflection principle

A path that start positive

but touches zero wealth (black line) has

one-to-one correspondence to reflected path (red dashed line).

{0, a = 0}

{5, b = 1}

A key question is how many paths lead from a to b. In order to reach b in n trades, there must be b - a

winning trades or u steps upward.

In[104]:= Solve[{u + d ⩵ n, u - d ⩵ b - a}, {u, d}] 〚1〛

Out[104]= u →
1

2
-a + b + n, d →

1

2
a - b + n

The number of paths ending at b is the number of ways u things can be chosen from n things
n

u

The ballot theorem concerns the number of paths for which the wealth does not return to zero.

In the diagram the total number of paths from {0, a = 0} to {n, b} is

n(a, b) =
n

1

2
(-a + b + n)

Discrete Random Walks 07-03-16.nb 3

copyright © N T Gladd 2016

The number n (a, b) includes paths that return to the origin. The first step of any path that doesn’t

return to the origin must must be {0, a = 0} → {1, 1}. By the reflection principle, each path that starts at

{1,1} and touches the origin and ends at {n, b} must have an analog “reflected” path that starts at {-1, 1}

and ends at {n, b}. The number of such reflections of the paths that return to the origin is

n-1(-1, b) =
n - 1
b+n

2

Thus the number of paths that don’t return to the origin is

n
dont return to a(a, b) =n(1, b) - n(-1, b)

=
n - 1

1

2
(b + n - 2)

-
n - 1
b+n

2

= 
n - 1
k - 1

 - 
n - 1
k



=
(n - 1) !

(k - 1) ! (n - 1 - (k - 1)) !
-

(n - 1) !

(k) ! (n - 1 - k) !

after some algebra

=
b

n

n
b+n

2

which is the ballot theorem path count.

1.2 Number of paths of length 2 n that connect a = 0 and b = 0 while always being

positive

In developing the properties of random walks an important quantity is the number of paths that returns

to an initial wealth level of 0, i.e., return to the starting level a).

A return to 0 can only occur after an even number of steps, so the number of paths is usually denoted

2n with n an integer.

Criterion 1.2 Feller 2.4

W0 = 0, W1 > 0, W2 > 0, ..., W2 n-1 > 0, W2 n = 0

or, more explicitly,

W0 = 0, W1 = 1, W2 = 2, ..., W2 n-2 = 2, W2 n-1 = 1, W2 n = 0

Each of the paths that returns to {2n, 0} must pass through {2n-1, 1}. Applying the ballot theorem

4 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[105]:= TraditionalForm@With[{nSteps = 2 n - 1, b = 1},

Ballot[nSteps, 1]]

Out[105]//TraditionalForm=


2 n - 1
n



2 n - 1

Feller introduces a convenient quantity which related to the ballot theorem number of paths.

L2 n =
1

n + 1

2 n
n



I initially tried to avoid the use of quantities such as L2 n (and the u2 n and f2 n to follow) but they really do

simplify the exposition.

Specifically, the ballot theorem path count can be represented as L2 n-2.

In[106]:= Module[{results, info},

results = Table[{n, 2 n, Ballot[2 n - 1, 1], L[2 n - 2]}, {n, 1, 5}];

info = PrependTo[results, {"n", "2n (length of path)", "ballot", "L2 n-2"}];

LGrid[info, "Number paths with\nW0=0,W1>0,...,W2 n-1>0, W2 n=0"]]

Out[106]=

Number paths with
W0=0,W1>0,...,W2 n-1>0, W2 n=0

n 2n (length of path) ballot L2 n-2

1 2 1 1
2 4 1 1
3 6 2 2
4 8 5 5
5 10 14 14

I develop some visualizations of the n= 2, 3 cases. The black paths denote all possible paths, the red

paths are the first return paths with all intermediate values being positive.

Discrete Random Walks 07-03-16.nb 5

copyright © N T Gladd 2016

In[112]:= ShowSelectedPaths4, 0, 0, Min[#〚2 ;; -2〛] > 0 &

Out[112]=

random walks n = 4, a = 0, b = 0
number paths = 6 number selected paths = 1

●

●

●

●

●
1 2 3 4

0.5

1.0

1.5

2.0

●

●

●

●

●
1 2 3 4

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0 ●

●

●

●

●
1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●
1 2 3 4

-2.0

-1.5

-1.0

-0.5

6 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[113]:= ShowSelectedPaths6, 0, 0, Min[#〚2 ;; -2〛] > 0 &

Out[113]=

random walks n = 6, a = 0, b = 0
number paths = 20 number selected paths = 2

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

3.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0 ●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5
●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

0.5

1.0 ●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

●

●

●

●

●

●

●
1 2 3 4 5 6

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Discrete Random Walks 07-03-16.nb 7

copyright © N T Gladd 2016

1.3 Number of paths of length 2n with end points a = 0 b = 0 with all intermediate

steps being ≥ 0

Criterion 1.3 Feller 2.5

W0 = 0, W1 ≥ 0, W2 ≥ 0, ..., W2 n-1 ≥ 0, W2 n = 0

or, more explicitly,

W0 = 0, W1 = 1, W2 ≥ 0, ..., W2 n-2 = ≥ 0, W2 n-1 = 1, W2 n = 0

These paths have a one-to-one correspondence with the case just considered.

For example, consider the case for n = 6 in section 1.3 where there were two paths out of 20 possible

paths that satisfied the criterion.

In[114]:= ShowPaths5, 0, 1, Min[#〚2 ;; -1〛] > 0 &

Out[114]=

2 random walks n = 5, a = 0, b = 1

●

●

●

●

●

●

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

●

●

●

●

●

●

1 2 3 4 5

0.5

1.0

1.5

2.0

Consider the portion of these paths immediately above from {1,1} to {n-1,1} and note that they satisfy

the conditions that all values are ≥ 1. If these paths are translated to {0,0} to {n-2, 0} it satisfies the

condition that all values are ≥ 0.

For example, consider paths that are only 4 steps long. From Feller’s formula we see the number of

paths satisfying Criterion 1.3 is L2 n

In[115]:= With[{n = 2},

L[2 n]]

Out[115]= 2

I illustrate those two paths

8 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[116]:= ShowSelectedPaths4, 0, 0, Min[#] ≥ 0 &

Out[116]=

random walks n = 4, a = 0, b = 0
number paths = 6 number selected paths = 2

●

●

●

●

●
1 2 3 4

0.5

1.0

1.5

2.0

●

●

●

●

●
1 2 3 4

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0 ●

●

●

●

●
1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●
1 2 3 4

-2.0

-1.5

-1.0

-0.5

2 Feller’s formulas related to first returns for flips of a fair

coin
Feller develops some results for fair coin flips, p = q = 1/2.

Some terminology

First return is the event

W0 = 0, W1 ≠ 0, W2 ≠ 0, ... , Wn-1 ≠ 0, Wn = 0

First passage through k > 0 is the event

W0 = 0, W1 < k, W2 < k, ... , Wn-1 < k, Wn = k

Define some quantities u2 n and f2 n convenient for discussing the probability of events associated with

fair coin random walks

u2 n ≡ 
2 n
n


1

2

2 n

f2 n ≡
1

2 n
u2 n-2 f0 ≡ 0

with

f2 n = u2 n-2 - u2 n

Discrete Random Walks 07-03-16.nb 9

copyright © N T Gladd 2016

In[117]:= Module{results, info},

results = Tablen, 2 n, u[2 n], u[2 n] 22 n, {n, 1, 5};

info = PrependToresults, "n", "2 n", "u2 n", "u2 n2
2 n";

LGrid[info, "Examples of u2 n"]

Out[117]=

Examples of u2 n

n 2 n u2 n u2 n22 n

1 2
1

2
2

2 4
3

8
6

3 6
5

16
20

4 8
35

128
70

5 10
63

256
252

The quantities u2 n and f2 n are related to random walks in the following theorem.

Criterion 2.1a Feller 4.7

W0 = 0, W1 ≠ 0, W2 ≠ 0, ..., W2 n-1 ≠ 0, W2 n = 0

First return occurs at 2n.

10 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

From 1.2, there were L2 n-2 paths that satisfied

W0 = 0, W1 > 0, W2 > 0, ..., W2 n-1 > 0, W2 n = 0

By symmetry there are another L2 n-2 paths that satisfy

W0 = 0, W1 < 0, W2 < 0, ..., W2 n-1 < 0, W2 n = 0

Number paths with
W0=0,W1≠0,...,W2 n-1≠0, W2 n=0

n (length of path) 2 L2 n-2 ℙf2 n22 n

1 2 2 2
2 4 2 2
3 6 4 4
4 8 10 10
5 10 28 28

The probability of first return at 2n is

(L2 n-2 + L2 n-2)
1

2

2 n

= f2 n

Example first return paths (red) for the case n = 2

In[118]:= ShowSelectedPaths4, 0, 0, FreeQ[#〚2 ;; -2〛, 0]  &

Out[118]=

random walks n = 4, a = 0, b = 0
number paths = 6 number selected paths = 2

●

●

●

●

●
1 2 3 4

0.5

1.0

1.5

2.0

●

●

●

●

●
1 2 3 4

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0 ●

●

●

●

●
1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●
1 2 3 4

-2.0

-1.5

-1.0

-0.5

Criterion 2.1b Feller 4.8

W0 = 0, W1 ≥ 0, W2 ≥ 0, ..., W2 n-1 ≥ 0, W2 n < 0

This is a straightforward analog of Criterion 1.3. See above

Criterion 2.1c Feller 4.5

W0 = 0, W1 ≠ 0, W2 ≠ 0, ..., W2 n-1 ≠ 0, W2 n ≠ 0

Paths that don’t touch zero. This is 1 - ℙ[no returns] at i =2, 4, ..., 2n

Discrete Random Walks 07-03-16.nb 11

copyright © N T Gladd 2016

1 - f2 - f4 - ... - f2 n

= 1 - (u0 - u2) - (u2 - u4) ... - (u2 n-2 - u2 n)

= u2 n

For example

Number paths with
W0=0,W1≠0,...,W2 n-1≠0, W2 n≠0

n (length of path) ℙu2 n22 n

1 2 2
2 4 6
3 6 20
4 8 70
5 10 252

The following show examples of no return paths (red) for n = 4

In[128]:= ShowSelectedPaths4, 0, 0, FreeQ[#〚2 ;; -2〛, 0]  &

Out[128]=

random walks n = 4, a = 0, b = 0
number paths = 6 number selected paths = 2

●

●

●

●

●
1 2 3 4

0.5

1.0

1.5

2.0

●

●

●

●

●
1 2 3 4

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0 ●

●

●

●

●
1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●
1 2 3 4

-2.0

-1.5

-1.0

-0.5

Criterion 2.1C Feller 4.6

Paths that are always positive or zero

W0 = 0, W1 ≥ 0, W2 ≥ 0, ..., W2 n-1 ≥ 0, W2 n ≥ 0

12 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

Number paths with
W0=0,W1≥0,...,W2 n-1≥0, W2 n≥

n (length of path) ℙu2 n22 n

1 2 2
2 4 6
3 6 20
4 8 70
5 10 252

The following show examples of always positive paths for n = 4

In[130]:= ShowSelectedPaths4, 0, 0, Min[#〚2 ;; -1〛] ≥ 0  &

Out[130]=

random walks n = 4, a = 0, b = 0
number paths = 6 number selected paths = 2

●

●

●

●

●
1 2 3 4

0.5

1.0

1.5

2.0

●

●

●

●

●
1 2 3 4

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0 ●

●

●

●

●
1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●
1 2 3 4

-2.0

-1.5

-1.0

-0.5

3 Probability that a random walk of length 2n has 2k positive

intervals and n2 -2k negative intervals
Feller introduces the quantity p2 k,2 n-2 k

p2 k, 2 n - 2 k = u2 k u2 n-2 k

Examples of p2 k,2 n

k 2 k n 2 n p2 k,2 n p2 k,2 n22 n

1 2 2 4
1

4
4

2 4 2 4
3

8
6

It is useful to visualize random walks for which 2k steps are positive and 2n -2k are negative.

I introduce some functions for identifying patterns in random walks

Discrete Random Walks 07-03-16.nb 13

copyright © N T Gladd 2016

In[81]:= Clear[PositiveIntervalQ, NumberPositiveNegativeIntervals];

PositiveIntervalQ[{Wi_, Wip1_}] :=

If[Or[Wi > 0, Wip1 > 0], 1, 0] ;

NumberPositiveNegativeIntervals[path_] :=

Module[{nPositive},

nPositive = PositiveIntervalQ /@ Partition[path, 2, 1] // Total;

{nPositive, Length[path] - 1 - nPositive}]

Examples for n = 2, k = 1. The red paths occur with probability p2, 2

In[132]:= ShowSelectedPaths4, 0, 0, NumberPositiveNegativeIntervals[#]〚1〛 ⩵ 2 &

Out[132]=

random walks n = 4, a = 0, b = 0
number paths = 6 number selected paths = 2

●

●

●

●

●
1 2 3 4

0.5

1.0

1.5

2.0

●

●

●

●

●
1 2 3 4

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0

●

●

●

●

●
1 2 3 4

-1.0

-0.5

0.5

1.0 ●

●

●

●

●
1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●
1 2 3 4

-2.0

-1.5

-1.0

-0.5

Examples for n = 3, k = 1. There are 26 paths in all. I show only the paths that occur with probability p2, 4

14 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[133]:= ShowSelectedPathsOnly6, AndNumberPositiveNegativeIntervals[#]〚1〛 ⩵ 4,

NumberPositiveNegativeIntervals[#]〚2〛 ⩵ 2 &

Out[133]=

n = 6 generates 64 random walks
12 selected paths

●

●

●

●

●

●

●

1 2 3 4 5 6
-1

1

2

3

4

●

●

●

●

●

●

●

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●

1 2 3 4 5 6

-1

1

2

3

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●

1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●

1 2 3 4 5 6

-2

-1

1

2

4 Proof by induction that p2 k,2 n-2 k corresponds to the

probability that a rw will have 2k positive intervals and 2n -

2k negative intervals
Consider a rw of length 2n for which the first return to the origin occurs at 2r. Two examples of such

path for r = 2 and n = 6 are

Discrete Random Walks 07-03-16.nb 15

copyright © N T Gladd 2016

In[134]:= Module[{examplePath, lab, g},

examplePath[1] = Transpose[{Range[0, 6], {0, -1, 0, 1, 0, -1, 0}}];

examplePath[2] = Transpose[{Range[0, 6], {0, 1, 0, 1, 0, -1, 0}}];

lab = Stl@StringForm["Case 1, 2r = 2, 2k = 4, 2n = 6"];

g[1] = ListLinePlot[{examplePath[1] 〚1 ;; 3〛 , examplePath[1] 〚3 ;; 7〛},

PlotMarkers → Automatic, PlotStyle → {Black, Blue},

PlotLabel → lab, ImageSize → {500, 100}, PlotRangePadding → None,

AspectRatio → 0.20`, Frame → {False, False, False, False}];

lab = Stl@StringForm["Case 2, 2r = 2, 2k = 4, 2n = 6"];

g[2] = ListLinePlot[{examplePath[2] 〚1 ;; 3〛 , examplePath[2] 〚3 ;; 7〛},

PlotMarkers → Automatic, PlotStyle → {Black, Blue},

PlotLabel → lab, ImageSize → {500, 100}, PlotRangePadding → None,

AspectRatio → 0.20`, Frame → {False, False, False, False}];

Grid[{{g[1]}, {g[2]}}]]

Out[134]=

●

●

●■

■

■

■

■
1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0
Case 1, 2r = 2, 2k = 4, 2n = 6

●

●

●■

■

■

■

■
1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0
Case 2, 2r = 2, 2k = 4, 2n = 6

There are two cases with equal probability — a first return (0, 2r) with positive intervals and a first return

with negative intervals — the black lines in the diagram above. Each of these two cases have probabil-

ity 1
2
 f2 r . The corresponding number of such first return paths is 1

2
 f2 r 22 r .

The objective is the determine probability of paths for which 2k intervals are positive and 2n- 2k are

negative over the entire path — p2 k, 2 n-2 k.

Consider case 1 first. The black part of the path, which has only negative intervals, has probability 1
2
 f2 r .

The second part of the path (the blue part) has both positive and negative intervals with probability

2 k, 2 n - 2 r . Thus, the number of paths for which there are 2k positive intervals between 0 and 2n is

1

2
f2 r 22 r (2 k , 2 n - 2 r) 22 n - 2 r =

1

2
f2 r (2 k, 2 n - 2 r) 22 n

=
1

2
f2 r u2 k u2 n-2 r - 2 k 22 n

Consider case 2 for which the first return path is positive but there are additional positive intervals in the

blue part of the path. As before, the number of black return paths is 1 /2 f2 r 22 r . For the second part of

16 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

the path we have the number of paths is 2 k - 2 r , 2 n - 2 r] 22 n - 2 r .

Thus, the number of paths for which there are 2k positive intervals for the path 0 to 2n is

1

2
f2 r 22 r (2 k-2 r , 2 n - 2 r) 22 n - 2 r =

1

2
f2 r (2 k - 2 r, 2 n - 2 r) 22 n

=
1

2
f2 r u2 k - 2 r u2 n-2 r - (2 k - 2 r) 22 n

=
1

2
f2 r u2 k - 2 r u2 n- 2 k 22 n

Combining the two cases

2 k, 2 n - 2 k 22 n = 
r=1

n-k 1

2
f2 r u2 k u2 n-2 r - 2 k 22 n + 

r=1

k 1

2
f2 r u2 k - 2 r u2 n- 2 k 22 n

or

2 k, 2 n - 2 k = u2 k 
r=1

n-k 1

2
f2 r u2 n-2 r - 2 k + u2 n- 2 k

r=1

k 1

2
f2 r u2 k - 2 r

Recall the relationship

u2 n = 
i=1

2 n

f2 r u2 k - 2 r

But, by hypothesis, the over probability was supposed to be p2 k,2 n-2 k so

2 k, 2 n - 2 k = u2 k 
r=1

n-k 1

2
f2 r u2 n-2 r - 2 k + u2 n- 2 k

r=1

k 1

2
f2 r u2 k - 2 r

=
1

2
u2 k u2 n-2 k +

1

2
u2 n- 2 k u2 k

= u2 k u2 n-2 k

as expected

With the probability p2 k,2 n-2 k established, I can calculate the probability that path remains positive after

2k steps. In the trading context I am considering, this is the probability that a sequence of 2n trades will

be profitable after 2k trades

2 n
2 k = 

i=1

k

p2 i, 2 n-2 i = 
i=1

k

u2 i u2 n-2 i

Discrete Random Walks 07-03-16.nb 17

copyright © N T Gladd 2016

In[135]:= Module{n = 10, results, cumResults, lab, DisplayPath, g},

DisplayPath[path_] := Thread[List[Range[0, Length[path] - 1], path]];

results = Table[u[2 k] u[2 n - 2 k], {k, 1, n}];

cumResults = FoldList[Plus, 0, results];

lab = Stl@StringForm["Probability of being in lead after k of `` trades", n];

g[1] =

ListLinePlot{DisplayPath[results]}, PlotMarkers → Automatic, PlotStyle → Black,

AxesLabel → Stl["k"], Stl"2 n
2 k", PlotLabel → lab, ImageSize → {500, 200};

lab = Stl@StringForm["Cumulative probability of being in lead after k of `` trades",

n];

g[2] = ListLinePlot{DisplayPath[cumResults]}, PlotMarkers → Automatic,

PlotStyle → Black, AxesLabel → Stl["k"], Stl"2 n
2 k",

PlotLabel → lab, ImageSize → {500, 200};

Grid[{{g[1]}, {g[2]}}]

Out[135]=

●

●
● ● ● ● ●

●

●

●

2 4 6 8
k

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ℙ2 n
2 k

Probability of being in lead after k of 10 trades

●

●

●

●
●

●
●

●

●

●

●

2 4 6 8 10
k

0.2

0.4

0.6

0.8

ℙ2 n
2 k

Cumulative probability of being in lead after k of 10 trades

5 Arcsine law
The arcsine functional form emerges in the limit that n >> 1. Recall

2 n
2 k = 

i=1

k

p2 i, 2 n-2 i = 
i=1

k

u2 i u2 n-2 i

The term u2 i is

18 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[143]:= Clear[i];

w5[1] = u[2 i]

Out[144]= 2-2 i Binomial[2 i, i]

In[145]:= w5[2] = w5[1] /. Binomial[a_, b_] →
a!

b! a - b!

Out[145]=

2-2 i 2 i!

i!2

Invoke Sterling’s approximation

In[146]:= w5[3] = w5[2] /. (a_)! → aa Exp[-a] 2 π a

Out[146]=
1

i π

Performing these operations on the entire summand

In[147]:= w5[4] = u[2 i] u[2 n - 2 i] /. Binomial[a_, b_] →
a!

b! a - b!
/.

(a_)! → aa Exp[-a] 2 π a // Simplify

Out[147]=
1

i -i + n π

It is convenient to cast the problem into that of determining the probability that a given fraction of inter-

vals of the rw are positive.


k

n
≤ x = 

i

n
=
1

n

x 1

i -i + n π

Let v = i/n


k

n
≤ x = 

v=
1

n

x 1

i n -i n + n π

= 

v=
1

n

x 1

i n -i n + n π

= 

v=
1

n

x (1/n)

v 1 - v π

For n >>1 the sum is approximated by an integral over v with dv = 1/n


k

n
≤ x =

1

π

0

x 1

v 1 - v

ⅆv

Note

Discrete Random Walks 07-03-16.nb 19

copyright © N T Gladd 2016

In[148]:= Integrate
1

π v 1 - v

, {v, 0, x}, Assumptions → {x ∈ Reals, 0 < x < 1}

Out[148]=

2 ArcSin x 

π

The desired probability for n >>1 is


k

n
≤ x =

2

π
arcsin x

I compare the summand and integrand for n = 20

In[149]:= Module{n = 20, values, points, lab},

values = Tablev,
1  n

v 1 - v π

, v,
1

n
, 1 -

1

n
,

1

n
 // N;

points = OC[#, Black] & /@ values;

lab =

Stl@StringForm["integrand (solid line) summand (points) for n = ``\nContinuous

representation of sum", n];

Plot
1  n

v 1 - v π

, {v, 0, 1}, AxesLabel → {Stl["v"], Automatic},

PlotLabel → lab, Epilog → points

Out[149]=

0.2 0.4 0.6 0.8 1.0
v

0.04

0.05

0.06

0.07

0.08

0.09

integrand (solid line) summand (points) for n = 20

Continuous representation of sum

20 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[150]:= Module{n = 20, values, points, lab},

values = Tablev,
1  n

v 1 - v π

, v,
1

n
, 1 -

1

n
,

1

n
 // N;

values = FoldList[Plus, 0, values 〚All, 2〛]〚2 ;; -1〛 ;

values = TransposeRange[1, n - 1]  n, values;

points = OC[#, Black] & /@ values;

lab = Stl@StringForm"[
i

n
]≤ x for n = ``\narcsine law", n;

Plot
2 ArcSin x 

π
, {x, 0, 1 },

AxesLabel → {Stl["x"], Automatic}, PlotLabel → lab, Epilog → points

Out[150]=

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

ℙ[
i

n

]≤ x for n = 20

arcsine law

The approximation is quite good, even for n = 20.

The fact that the continuous arcsine form is accurate even for modest values led me to forego the the

derivation of the arcsine distributions for last returns and maxima using discrete random walks. Actually,

they are more straightforward that the derivation of the arcsine distribution for the fraction of time in the

lead. Instead I made the connect with trading for Brownian motions and focused on numerical methods.

Functions

In[84]:= Clear[Ballot];

Ballot[n_, b_] :=
b

n
Binomialn,

1

2
b + n

Feller’s formula

L2 n =
1

n + 1

2 n
n



Discrete Random Walks 07-03-16.nb 21

copyright © N T Gladd 2016

In[86]:= Clear[L, u, f, p];

L[twon_] := Modulen = twon  2,
1

n + 1
Binomial[2 n, n] ;

u[twon_] := Modulen = twon  2,
1

2

2 n

Binomial[2 n, n] ;

f[twon_] := Modulen = twon  2, Ifn ≥ 1,
1

2 n
u[2 n - 2], 0;

p[twok_, twon_] := Modulek = twok  2, n = twon  2, u[2 k] u[2 n - 2 k];

u2 n ≡ 
2 n
n


1

2

2 n

f2 n ≡
1

2 n
u2 n-2 f0 ≡ 0

In[121]:= Clear[ShowPaths];

ShowPaths[n_, a_, b_, Selector_] :=

Module

{ u, d, steps, permutations, paths, selectedPaths, displayedPaths, plots, lab},

{u, d} = 
1

2
n + b - a,

1

2
n - b - a;

steps = Flatten[{Table[1, {u}], Table[-1, {d}]}];

permutations = Permutations[steps];

paths = Map[FoldList[Plus, 0, #] &, permutations];

selectedPaths = Select[paths, Selector];

displayedPaths = Thread[List[Range[0, n], #]] & /@ selectedPaths;

plots =

ListLinePlot[#, PlotMarkers → Automatic, PlotStyle → Black] & /@ displayedPaths;

lab = Stl[StringForm["`` random walks n = ``, a = ``, b = ``",

Length[selectedPaths], n, a, b]];

Labeled[Grid[Partition[plots, UpTo[3]]], lab, Top]

22 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

ShowSelectedPaths6, 0, 0, Min[#〚2 ;; -2〛] > 0 &

random walks n = 6, a = 0, b = 0
number selected paths = 2

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

3.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1.5

2.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0 ●

●

●

●

●

●

●
1 2 3 4 5 6

-1.0

-0.8

-0.6

-0.4

-0.2

●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5
●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

0.5

1.0 ●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

●

●

●

●

●

●

●
1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

●

●

●

●

●

●

●
1 2 3 4 5 6

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Discrete Random Walks 07-03-16.nb 23

copyright © N T Gladd 2016

In[93]:= Clear[ShowSelectedPaths];

ShowSelectedPaths[n_, a_, b_, Selector_] :=

Module{ u, d, steps, permutations,

paths, selectedPaths, displayedPaths, plots, Color, lab},

{u, d} = 
1

2
n + b - a,

1

2
n - b - a;

steps = Flatten[{Table[1, {u}], Table[-1, {d}]}];

permutations = Permutations[steps];

paths = Map[FoldList[Plus, 0, #] &, permutations];

selectedPaths = Select[paths, Selector];

displayedPaths = Thread[List[Range[0, n], #]] & /@ paths;

Color[path_] := If[Selector[path 〚All, 2〛], Red, Black];

plots = ListLinePlot[#, PlotMarkers → Automatic, PlotStyle → Color[#]] & /@

displayedPaths;

lab = Stl[StringForm["random walks n = ``, a = ``, b =

``\nnumber paths = `` number selected paths = ``",

n, a, b, Length[paths], Length[selectedPaths]]];

Labeled[Grid[Partition[plots, UpTo[3]]], lab, Top]

In[95]:= Clear[ShowPaths];

ShowPaths[n_, Selector_] :=

Module[{paths, selectedPaths, displayedPaths, plots, Color, lab},

paths = ConstructPaths[n] ;

selectedPaths = Select[paths, Selector];

displayedPaths = Thread[List[Range[0, n], #]] & /@ paths;

Color[path_] := If[Selector[path 〚All, 2〛], Red, Black];

plots = ListLinePlot[#, PlotMarkers → Automatic, PlotStyle → Color[#]] & /@

displayedPaths;

lab = Stl[StringForm["n = `` generates `` random walks\n`` selected paths",

n, Length[paths], Length[selectedPaths]]];

Labeled[Grid[Partition[plots, UpTo[3]]], lab, Top]]

In[97]:= Clear[ShowSelectedPathsOnly];

ShowSelectedPathsOnly[n_, Selector_] :=

Module[{paths, selectedPaths, displayedPaths, plots, Color, lab},

paths = ConstructPaths[n] ;

selectedPaths = Select[paths, Selector];

displayedPaths = Thread[List[Range[0, n], #]] & /@ selectedPaths;

Color[path_] := If[Selector[path 〚All, 2〛], Red, Black];

plots = ListLinePlot[#, PlotMarkers → Automatic, PlotStyle → Color[#]] & /@

displayedPaths;

lab = Stl[StringForm["n = `` generates `` random walks\n`` selected paths",

n, Length[paths], Length[selectedPaths]]];

Labeled[Grid[Partition[plots, UpTo[3]]], lab, Top]]

24 Discrete Random Walks 07-03-16.nb

copyright © N T Gladd 2016

In[99]:= Clear[ConstructPaths];

ConstructPaths[n_] :=

Module[{pathList, ExtendPath},

ExtendPath[path_, x_] := Append[path, path 〚-1〛+ x];

pathList = {{0, 1}, {0, -1}};

For[i = 2, i ≤ n, i++,

pathList = Join[ExtendPath[#, 1] & /@ pathList, ExtendPath[#, -1] & /@ pathList]];

pathList]

Discrete Random Walks 07-03-16.nb 25

copyright © N T Gladd 2016

